
Chapter 7

A Generic Recommender Server

7.1 Introduction

Recommender systems have been widely applied in various domains, e.g., e-commerce,

proactive information retrieval, personalized search, online entertainment etc. The core

problem of recommendation is selecting and presenting items from a usually large item

space, for which many effective algorithms and interfaces have been designed. Software

tools, libraries, systems also have been developed for building recommender systems

in various applications. Recommender system research has reached a tipping point

where user-centric and algorithmic research can be closely combined to improve the

user experience of recommender systems. However, we need new software tools to better

support this type of work. The key to provide support is to accelerate the process of

going from modeling and experimenting in an offline setting to online environments

where users are interacting with the design of the system in real-time. We designed and

developed a server framework to fulfill this goal. This chapter focuses on answering the

following questions: “what is going from offline to online for recommender systems, why

we want to go from offline to online and how?”

What is going from offline to online in recommender systems? Offline research or

work suggests that it does not involve a regularly running system in production used

by people. They might rely on a snapshot of data collected from online systems. In

this setting, algorithms designed are typically for batch processing, not for real-time

responding to user interactions. Online environment however involves a constantly

101

102

running system that deals with user requests and interactions in real-time whenever

a user visits. Two aspects of a research can go from offline to online: design and

evaluation. In the design aspect, it means designing for the user-system interaction

process, going beyond historical statistical assumptions, being explicit in modeling user

state changes with the environment. In the evaluation aspect, it means having the goal

of user experience in mind, evaluating interfaces, model and algorithm design in front

of people, answering questions of how these manipulations affect people in both lower-

level perception, higher-level cognition and more broadly user personal development and

social welfare.

Why do we want to go from offline to online in recommender systems? The reasons

of going from offline to online go into three perspectives. One is from the perspective

of studying the theories of human psychology and behavior. Recommender systems

are designed for people to use to accomplish certain goals or tasks. The research of

recommender systems largely involves people using the system and how we design com-

putational models or algorithms to describe and support these people’s tasks. From

this perspective, a recommender system is an artifact, stimuli or a way of manipulation

through which we study people. In this case, we have to put our system in front of

people for them to use.

Another perspective starts from the limitation of machine learning theories. Sim-

ply treating recommendation problems as statistical learning problems may not be the

right approach because there are mis-alignments between modeling assumption and the

reality. The environment is dynamic which constantly involves distribution shifting.

Recommender systems make real-time decisions in dynamic uncertain environments.

Algorithms designed to learn from dynamic environments needs to be tested in user-

facing systems to gain better ecological validity.

Lastly, a recommender system at its core is a decision-making support tool or infor-

mation navigational support tool. The ultimate goal is for user experience, satisfaction

and adoption of the technology. In the long run, we can better understand how rec-

ommender systems are affecting people’s life, e.g., answer the question of whether the

algorithm or design is improving or hurting the well-being of people.

How do we go from from offline to online in recommender systems? Going from

offline to online has benefits but also challenges. For example, when we think about

103

designing and evaluating a design in front of people, there are potentially two apparent

obstacles. One obstacle is the access to real users. Another one is the cost of system

implementation. In this work, we propose a generic recommender server framework

to reduce the cost of implementation by extracting out the common components of

recommender systems. Recommender system researchers or designers can now focus on

one part and then re-use other parts. The barrier of access to users can be potentially

overcome by designing user studies and recruiting people to try out new techniques

(e.g., from crowd-sourcing platforms, which however has limitation of generalization

because the participants might not be real users of the system). We also envision that

this server can become a open service that gathers and allocates application users as

resources. What we hope to achieve in the long-run is a recommender system research

platform where researchers and practitioners can easily plug-in their own design and get

evaluation out of it from various domains of applications if these applications are hosted

in the service. This work of designing a generic server is a necessary step in moving

towards that direction

7.2 Related Work

There are many softwares that have been built to support building recommender sys-

tems. We categorize these softwares into four categories: command-line tools, libraries

with programming APIs, (distributed) systems and servers (or services), as shown in

Table 7.1.

Some softwares implement specific models or algorithms, e.g., Apex SVDFeature

[21], SLIMx [8], MyMediaLite [135], LibFM [110], LibSVM [136] etc. which we catego-

rize as command-line tools.

Some softwares provide with implementations for multiple models or algorithms and

provide their capabilities through programming language APIs, e.g., Lenskit for collab-

orative filtering based algorithms [89], scikit-learn [90] and SparkML [91] for various

kinds of machine learning models. These also include many python, Java or R pack-

ages for building recommender systems. Researchers have developed general libraries

to build models with complicated structures, e.g., the recently popular platform Ten-

sorFlow [92]. Stan [93] also enables flexible specification of model structure and was

104

developed earlier than TensorFlow although it is more oriented towards offline data

analysis.

Some softwares implemented generic modeling techniques or algorithms to run in

clusters of machines. It could be specific models, e.g., xgboost [108], difacto [137] etc. It

could be general computation operators, e.g., TensorFlow [92]. We categorize these soft-

wares as (distributed) systems. Prediction.io [94] is a quite different distributed system

because it is service-oriented. It has production serving and maintaining components

and integrates a variety of models and algorithms through SparkML [91]. We categorize

it as a predictive or recommendation server if it is used in recommender systems.

The generic server designed in this work is novel because of the following reasons

(particularly compared with Prediction.io).

• Recommendation is different from machine learning, particularly retrieving and

ranking candidates are conceptually different, additional functionalities to provide

than building predictive models.

• In our server design, there is no hard separation between the event logging and

the serving of predictions or recommendations in the architecture level, which is

Prediction.io’ design. This is because data processing especially feature extraction

processes (described in details later) can be determined by specific recommenda-

tion models in the engine. This design enables the following two key benefits.

– The online and offline loop is closed and there is not a hard separation be-

tween offline model building and online model serving, which helps achieve

the goal of easily going from offline to online.

– Real-world applications of recommender systems require a data processing

and feature extraction framework that can flexibly take in different types of

data sources and utilize them in the model. Our design better addresses this

requirement as elaborated in details later.

In the following section, I describe in details the design goals, principles and specific

implementations of the generic server, which we open sourced on GitHub 1 and name

as Samantha.
1 https://github.com/grouplens/samantha

105

Table 7.1: A high-level comparison of the available softwares for building recommender
systems.

Software General Domain Software Type

Lenskit recommendation general tool/library

MyMediaLite recommendation general tool

SLIMx recommendation specific tool

libsvm
libFM

Apex SVDFeature
machine learning specific tool

scikit-learn
Weka

machine learning general library

dmlc xgboost
dmlc difacto

machine learning distributed system

dmlc mxnet
theano
caffee

tensorflow

deep(architectural/graphical)
machine learning

general library
distributed system

SparkML (Mahout) machine learning
general library

distributed system

Prediction.io machine learning
server

distributed system

Samantha
recommendation
machine learning

general library
server

distributed system

7.3 The Generic Server Design

Front-end user-facing clients,
e.g. browser, mobile app etc.

Application Server

Recommender Server

Users

Figure 7.1: The environment that the generic recommender server is designed for.

Samantha, as a generic recommender server, is designed with the environment il-

lustrated in Figure 7.1 in mind. It has four major parties: users, front-end user-facing

clients, application servers and recommender servers. The recommender server only

communicates with an application server, but not with the user-facing clients because

of security reasons. Typically they communicate with each other through the HTTP

106

(HTTPS) protocol, i.e., a recommender server is a web server similar to an application

server, but specially focused on recommendation tasks. Going from offline to online

means that the recommender server shipped with recommendation models and algo-

rithms needs to respond to real-time requests and interaction feedbacks from users.

To enable this real-time recommendation serving capability, the following function-

alities are necessary (this is what it takes to go from offline to online in summary for a

recommender system):

• data management, including data storage and processing pipeline in response to

user interactions or application content management

• model management, including online updating, building, loading, dumping and

serving of the models

• standard models and algorithms, e.g., collaborative filtering algorithms, machine

learning regression or classification techniques

• experimenting support, e.g., A/B testing, random or hashed, persistent assignment

of users into different experimental or control conditions

• real-time feedback loops, for online machine learning and evaluation

• extensibility for new model and algorithm design, e.g., the server can provide with

parameter abstraction for model designers to freely design new computational al-

gorithms on top of parameters without worry about where these parameters are

stored and how to scale them up to large models; the server can also support pa-

rameter estimation by providing general optimization techniques or classic solvers,

e.g., stochastic gradient descent, to optimize for flexible objectives that come out

from the model design process

• flexible model dependency, e.g., model ensemble through boosting, bagging or

stacking (i.e., multiple levels of model dependency)

• compatibility with other state-of-the-art systems, i.e., enable plugging in other

implementations of recommendation or machine learning algorithms, general li-

braries

107

In this section, I describe how Samantha is designed to support all of these func-

tionalities in a reusable, extensible and potentially scalable way so that researchers can

focus on the most relevant part but still have a fully-functional system to go from offline

to the online environment.

7.3.1 Recommender Components and Extensibility

In the server Samantha, Recommender Engine is referred to as a complete specifica-

tion of how a recommender works. It supports multiple recommender engines, which is

designed to scope applications. They are functionally similar to running multiple rec-

ommender servers. A recommender engine consists of eight types of components each

of which can have multiple ones: indexer, retriever, predictor, ranker, recommender,

router, evaluator, scheduler.

indexer. This type of component deals with data indexing in real-time when receiving

data from applications. Since it knows how the data is stored, it is also responsible for

outputting data from the behind storage for further batched data processing. By default,

Samantha provides with multiple types of indexer implementations corresponding to

different data storage back-end systems. Usually, one indexer is configured for one data

type, similar to a database table, although one indexer type is general enough to take

in any data types with different data fields. One can use one indexer for each data

type the application sends in because it eases the integration between the recommender

server and the application server. This will be elaborated in details later.

retriever. This type of component is responsible for retrieving candidates for a rec-

ommender engine. Recommender systems research typically focus on predictive model

and algorithm innovation ignoring the problem of retrieving in an actual recommender

system. Partially, it’s because there are not many online experiments reported in details

in academic and industrial research as to go into this aspect. However, when item space

is big and especially when the predictive model involves complicated computation, an

initial candidate generation process is a necessary component for a recommender engine.

Retriever can be simple and straightforward, e.g., retrieving all of the items or retrieving

the top popular items. It can be complicated and critical to have good recommenda-

tions, too. For example, we can build simple machine learning models in a retriever to

score all items and pick the top to generate candidates. Another possible approach is

108

to build fast associative models as an item-based k-nearest neighbor algorithm does, in

which candidates become those most similar items to a user’s previously liked items. We

can also blend multiple retrievers with different priorities, e.g., first using any results

produced by a personalized retriever and resort to non-personalized one when necessary.

predictor. This type of component is the core part of operationalizing machine

learning theories, roughly falling into the supervised learning domain. This is mainly a

wrapper for a machine learning model implementation, which is essential for enabling

Samantha to integrate with other machine learning libraries.

ranker. This type of component takes in an initial candidate item set and rank

them based on certain criterion which could just be the output score of a predictor

component.

recommender. In Samantha, a standard recommender is just the combination of a

retriever and ranker, i.e., a retriever retrieves initial candidates from the storage or an

initial model and feeds them into ranker to generate the ranked list.

evaluator. There are two standard types of evaluators. Prediction evaluator provides

the ability to compute prediction metrics for any predictor component. Recommenda-

tion evaluator evaluates any recommender component by computing top N recommen-

dation metrics.

router. This type of component implements how to find the right recommender or

predictor for a request, which is the foundation of A/B testing or between-subjects field

evaluation framework.

scheduler. This type of component supports calling model management interfaces

regularly with a predefined schedule, e.g., for re-training a machine learning model.

Extending the capabilities of the generic server involves providing specific type of

implementation for any type of recommender component that is relevant. For exam-

ple, if the research is about designing new types of predictive models, it then involves

implementing a predictor type after which the specification of the predictors in a rec-

ommender engine can be replaced with the new implementation but reuse the default

available types of other components.

109

7.3.2 Server Interface, Architecture and Scalability

Samantha can be summarized in simple words as a HTTP server embedded with a

recommendation framework. Before describing its interfaces and architecture, we first

introduce the design of the Data Access Object (DAO) interface. Whenever the server

interacts with outside data sources, it goes through a DAO implementation. All the

implementations of the DAO interface summarizes the server’s understanding on the

possible data formats that the server can take in. When a request wants to tell the

server to use a piece of data, it needs to tell the server which type of DAO is being used

and how to construct that DAO with additional parameters passed in in the request.

Samantha’s capabilities are provided to applications through three types of HTTP

interfaces: data indexing, model management, recommendation (prediction) serving.

This is the very front boundary of the server, through which the application server

interacts with. Figure 7.2 illustrates the processing flow of Samantha receiving different

types of requests.

Model management with parameters of component type, component name, model

name, model operation. When model management requests come, Samantha first rec-

ognizes which type of component it is, e.g., retriever or predictor and then finds the

specific component (there could be multiple components with the same type, e.g., mul-

tiple predictors). After this, the identified component will be constructed and do the

actual work of managing its models. The request will also pass in DAO information

if the model management task involves reading and processing a piece of data, e.g.,

training a machine learning model with a given data source.

Data indexing with the parameters of indexer name, DAO information. If data are

sent in for indexing, the server finds the specific indexer based on the indicated name in

the request and ask the indexer to index data into the back-end storage system. Indexers

support subscribers which means the application can ask to pass those data to other

components at the same time in addition to being indexed so that other components can

update themselves in real-time, e.g., updating a machine learning model in a predictor

according to an online optimization algorithm.

Recommendation and prediction serving with the parameters of user identification,

context information. If the application server is requesting recommendations or predic-

tions, Samantha first asks a router to identify a recommender or predictor. Then the

110

identified recommender or predictor is responsible for generating recommendation or

prediction results. Before returning results, a wrapping process writes relevant infor-

mation on the working recommender or predictor into the response in order to let the

application know who generates the results (together with logging by the application,

this enables analysis and comparison among different predictors or recommenders).

Router
Indexer for
data type a

Predictor

Retriever

Ranker

Model management Recommendation and
prediction serving Data indexing

Predictor

Recommender

Retriever

Recommender

Ranker

Config
Service

Indexer for
data type b

Indexer for
data type c

…...

Storage
Service

…...

…...

…...

…...
Evaluator

Evaluator
…...

Subscribers

Subscribers

Subscribers

Figure 7.2: Samantha Data and Request Processing Flows. The directions of the arrows
represent data flow and component dependencies.

Data processing pipeline

The data processing pipeline in Samantha consists of two concepts: data expanders and

feature extractors. Data expanders are motivated by the observation that a complex

model building requires data that goes beyond what one data type can offer or the raw

content, interaction data sent in by the application requires future processing before

being used for building models. Feature extractors are motivated by the observation that

machine learning models require design matrix in which each data point is represented

as a numerical vector containing the values of variables to be modeled, each of which is

associated with certain parameters to estimate (e.g., simple scalar coefficient or vector

111

embedding) depending the model design.

There are four common types of expanders: data joining, predictor based expander,

filtering, (grouping and then) merging. We illustrate these expanders with an example.

Imagine an application sends in a data point which is a tuple of user ID, item ID and

rating. In order to build a potentially complex rating prediction model, we need to

expand this data point according to how the rating prediction model is designed. For

example, this model might relies on another model that tries to estimate how much

the user likes tags of the item. We first need an expander that can communicate with

the data storage service (e.g., a relational database) for the tags of the item. This is a

generic data expander because it is performing key-based query in a data service and

join the search results with the data point. The next expander we need is a predictor

based expander that takes in this data point and expands it with another model’s

predictions (assuming the user-tag preference model has been built in a predictor). If

we want to exclude ratings that are out of the range [0.5, 5.0] because those might

be invalid ratings or ratings designed for other purposes by the application, we need

another filtering expander that filters the data point according to the criteria. If the

rating prediction model actually needs all the user’s rating history (e.g., SVD++ [15]),

having access to such individual ratings after querying the data storage service, we

need a merging expander that combines all the previously rated items of the user into

one data field and join it with the current data point. Grouping expanders might be

needed when we are training a SVD++ prediction model (through model management

requests) while the rating data provided by the DAO are individual ratings not grouped

by users yet.

Even if we have all data fields available in the data point, a statistical model can not

use it yet because it needs a numerical vector representation. This requires mapping a

data field into an index space with which a corresponding parameter space is created.

For example, user ID needs to be converted to an index that refers to its bias parameter

in a vector parameter space or its latent factor parameters in a matrix parameter space

for a standard matrix factorization model [18]. This is exactly what feature extractors

are designed for. Each feature extractor takes in a data point and convert the relevant

data field to be an index and a value (named collectively as a feature). For categorical

112

fields like user IDs, the value here is usually one, but for numerical variables (e.g., pre-

dicted tag preference), the value here is the predicted preference score. After processing

through a list of feature extractors, we have a numerical vector representation of a data

point which can further be used by statistical models now.

Feature extractors rely on the capability of converting any string into the index of

a densely organized variable or parameter space, which is referred as index space.

Why is this scalable?

The scalability of the server can be explained in three aspects. First, model size can

go beyond what a single machine can hold utilizing distributed model training through

the parameter server paradigm. Second, data sets can go beyond what a single machine

supports and utilizing distributed storage system. Third, the serving of recommenda-

tion and predictions can be duplicated across multiple server clusters responding to

potentially a large number of requests at the same time.

7.3.3 Using the Server

To use the server framework, what researchers and practitioners need to do now become

1. configure a recommender engine (explained below) to specify how each part should

run

2. if the currently implemented state-of-the-art models or algorithms can not be used

or the research itself is about new models or algorithms, design and develop new

models or algorithms following the server framework

3. send in data generated by application content management or users interacting

with the application front-end clients

4. ask for recommendations or predictions in real-time

A minimum recommender engine requires specifications on what data will be stored

and how they are stored when data comes in in real-time, how an initial set of candidates

will be retrieved and how to rank the candidates based on the prediction of a user

113

preference model. Assuming a standard matrix factorization model predicting user-

item ratings, we illustrate below how to set up an engine in the recommender server to

respond to application users in real-time.

indexers: One indexer that supports indexing user-item rating data into the server

• name: UserItemRatingIndexer

• implementation: database based indexer (e.g., MySQL database based indexer)

• data fields: user ID, item ID, rating, time-stamp

retrievers: One retriever that retrieves all available items in the database store of

the item data (note that the retrieved item list needs an expander to set the current

user ID in the request)

• name: AllAvailableItemsRetriever

• implementation: database based retriever (e.g., MySQL database based retriever)

• table: ItemData

• retrieved fields: item ID

• expanders: set the user ID data field in the request into the retrieved list of item

data

predictors: One predictor that builds and maintains a matrix factorization model

[18] with user, item bias terms and user, item latent factors.

• name: MatrixFactorizationRatingPredictor

• implementation: matrix factorization model based predictor

• feature extractors:

– user bias extractor: convert user ID into the user index in the bias parameter

space named as UserBias

– item bias extractor: convert item ID into the item index in the bias parameter

space named as ItemBias

114

– user factor extractor: convert user ID into the user index in the latent factor

parameter space named as UserFactor

– item factor extractor: convert item ID into the item index in the latent factor

parameter space named as ItemFactor

• model loss: L2-norm loss (regression)

• learning method: stochastic gradient descent

rankers: One ranker that ranks based on the predicted rating of the above rating

predictor

• name: RatingPredictorBasedRanker

• implementation: a predictor based ranker which first makes predictions on a list

of retrieved candidates and rank the list according to the predictions

• predictor name: MatrixFactorizationRatingPredictor

recommenders: One recommender that retrieves a candidate list and then ranks it

based on the above ranker

• name: StandardRecommender

• implementation: a recommender that first retrieves a list of candidates with a

retriever and ranks the candidates with a ranker

• retriever name: AllAvailableItemsRetriever

• ranker name: RatingPredictorBasedRanker

schedulers: One scheduler that trains the rating prediction model every day by

taking in data from the indexed user-item ratings (note that the indexer supports both

indexing, i.e., data in, and outputting, i.e., data out). Without this scheduler, the

application server can still regularly sends in model management requests (described

above section) to update the model.

• name: TrainingRatingModelScheduler

115

• implementation: a scheduler that mimics a model management request

• schedule: every mid-night

• request context: all available data in the indexer UserItemRatingIndexer

7.4 Case Studies

In this section I describe three case studies that demonstrate a) this server framework

can easily integrate with state-of-the-art machine learning libraries and systems; b) this

server framework enables complex online experiments with multi-level model dependen-

cies or many important factors to model.

7.4.1 Extension and Integration

Integrating the generic server with other libraries or systems involves implementing a

recommender component. This is exactly the same as writing its own implementation

of a recommender component within the server. For example, the server provides with

the implementation of a type of predictor based on the modeling technique SVDFea-

ture [21]. When the component involves complex learning models or algorithms, the

server provides support to further simplify by defining interfaces for the new component

to implement. The interfaces for any recommender component that involves complex

statistical machine learning models are as follows:

• LearningInstance: A feature list (or numerical vector) representation of a data

point

• LearningData: An iterable set of LearningInstance representing a data set

• LearningModel : A complete representation of a model being able to extract fea-

tures for a data point to get LearningInstance representation and make predictions

on a LearningInstance

• LearningMethod : Train or update a LearningModel with a LearningData

116

TensorFlow

TensorFlow [92] is one of the most widely used machine learning libraries and systems

nowadays. The powerful capabilities of TensorFlow enable not only flexible incorpo-

ration of data available in real-world applications, but also the flexible design of the

modeling structure. We show here that the server framework we designed can easily

integrate TensorFlow so that any recommendation models that are designed in Tensor-

Flow with any type of computational graphs can run in the generic server leveraging

the data processing pipeline, model management interfaces in Samantha.

Correspondingly, the integration takes the following implementation following the

server framework (note that this integration is agnostic to the computational graphs):

• LearningInstance: A dictionary of tensors (called feed dictionary in TensorFlow)

where the key is the name of the tensor defined in the computational graph and

the value is the tensor representation of a data point

• LearningModel: Extract features by utilizing feature extractor interfaces and con-

vert the list of indices and values into a TensorFlow specific LearningInstance;

make predictions by feeding in the dictionary of tensors and running a specified

operation in the computational graph

• LearningMethod: Iterate over a LearningData that outputs TensorFlow specific

LearningInstance, feed in the dictionary of tensors and run a specified model

updating operation in the computational graph (e.g., a minimizer over a loss in

the graph)

• predictor: When responding to prediction requests, this TensorFlow specific pre-

dictor asks the TensorFlow specific LearningModel to make predictions on the

input data points. When responding to model management requests, it dele-

gates the server to interpret a specific DAO and asks the TensorFlow specific

LearningMethod to update or train the model with the DAO based LearningData

representation.

Imagine that we want to run a TensorFlow graph defining a SVD++ [34] model. For

simplicity of illustration, we dropped the bias terms here which then gives the following

117

prediction function, where U , Q and V are user, implicit action and item latent factor

matrix and I is the set of items rated by user u.

f(u, I, a) = (Uu +
1

2
√
|I|

∑
i∈I

Qi)
TVa (7.1)

The simplest definition of the a TensorFlow graph would be taking in four tensors

(ignoring the bias terms for simplicity of illustration): a tensor (ImplicitFactor) with

items rated by a user (note these items need to be indices referring to a matrix parameter

space which suggests that the item IDs in the data sources should go through the feature

extracting process in the data processing pipeline mentioned above), a tensor with the

user (UserFactor, similarly an index referring to a matrix parameter space), a tensor

with the target item (ItemFactor, similarly an index) to make prediction on and a tensor

(Rating) with the actual rating given by the user on the item. To move this TensorFlow

graph from offline to online in the generic server, we replace the predictor in section

7.3.3 with the following (note that it assumes the input data point has a data field with

all the rated items by the user which can be easily achieved through the data expanders

in the data processing pipeline of Samantha).

predictors: one predictor that is based on the TensorFlow predictor type

• name: TensorFlowSVDPlusPlusRatingPredictor

• implementation: the above mentioned TensorFlow specific predictor type

• graph: a file path pointing to the definition file of the TensorFlow graph

• feature extractors:

– user factor extractor: convert user ID into the user index in the user latent

factor parameter space named as UserFactor

– item factor extractor: convert item ID into the item index in the item latent

factor parameter space named as ItemFactor

– implicit action extractor: convert a list of item IDs into the the item indices

in the implicit action latent factor parameter space named as ImplicitFactor

– rating value extractor: output the rating value as it is named as Rating

118

xgboost

xgboost [108] is also one of the widely used machine learning systems in various domains

including recommender systems, e.g., GBDT has been used in Yahoo! News recommen-

dation [138]. Similarly, we show that xgboost can be easily integrated into the server

framework and accelerate the process of moving a xgboost-based recommendation sys-

tem from offline to online.

• LearningInstance: A labeled feature map from the feature index to feature value

as required by xgboost

• LearningModel: Extract features by utilizing feature extractor interfaces and con-

vert the list of indices and values into a xgboost specific LearningInstance; make

predictions by getting results from a xgboost Booster

• LearningMethod: Iterate over a LearningData that outputs xgboost specific Learnin-

gInstance to create a xgboost specific data iterator and ask the xgboost library to

train the xgboost LearningModel with the data iterator.

• predictor: When responding to prediction requests, this xgboost specific predictor

asks the xgboost specific LearningModel to make predictions on the input data

points. When responding to model management requests, it delegates the server

to interpret a specific DAO and asks the xgboost specific LearningMethod to train

the model with the DAO based LearningData representation.

7.4.2 Online Recommender Blending

A challenge of running recommendation models and algorithms in an online setting

where application users can interact with the system any time lies at the continuous

management of data and models, and dealing with complex multi-level model depen-

dency. Samantha has been used by MovieLens to provide personalized movie recom-

mendations [139]. Here I describe how one of the recommenders was implemented in

Samantha which is based on the techniques of matrix factorization and LinearUCB [35].

The recommender has two levels of model dependency. In the first level, there

are two matrix factorization models predicting rating (f1(u, a) in Equation 7.2) and

119

action probability (f2(u, a)) respectively (where action is binary representing whether a

displayed movie was interacted by the user or not). Conceptually, these two models are

estimating how much a user might like a movie (predicted rating) and how likely a user

might interact with a movie (predicted action probability). In the second level, there is

one LinearUCB model that combines the predicted rating and action probability of a

user-item pair to maximize the online interactions from users as a reward function by

estimating the best set of weights for the two predictions. The label value of r∗(u, a)

also takes the value of either zero (when a movie is displayed but there is no action) or

one (when a movie is displayed and also acted upon by the user).

r∗(u, a) = β1 · f1(u, a) + β2 · f2(u, a) (7.2)

With already implemented predictor types supporting the matrix factorization and

LinearUCB models, moving this recommender from offline to online environment does

not need any additional implementation by using the following specifications in the

recommender engine (continuing the minimum recommender engine example in Section

7.3.3).

indexers: One indexer that supports indexing user-item action data into the server

• name: UserItemActionIndexer

• implementation: database based indexer (e.g., MySQL database based indexer)

• data fields: user ID, item ID, action, time-stamp

predictors: One predictor that builds and maintains a matrix factorization model

[18] to predict action probability.

• name: MatrixFactorizationActionPredictor

• implementation: matrix factorization model based predictor

• feature extractors: the same as MatrixFactorizationRatingPredictor

• model loss: logistic loss (binary classification)

• learning method: stochastic gradient descent

120

Another predictor that online estimates a LinearUCB model to dynamically combine

rating and action prediction models.

• name: LinearUCBActionPredictor

• implementation: LinearUCB model based predictor

• data expanders:

– a predictor based expander that expands with the predicted rating of Ma-

trixFactorizationRatingPredictor

– a predictor based expander that expands with the predicted action probabil-

ity of MatrixFactorizationActionPredictor

• feature extractors:

– predicted rating value extractor: convert the predicted rating into a repre-

sentation with both the blending weight index in the LinearUCB model and

the predicted value

– predicted action probability value extractor: convert the predicted action

probability into a representation with both the blending weight index in the

LinearUCB model and the predicted value

• learning method: LinearUCB specific learning method

schedulers: One scheduler that trains the action prediction model every day by

taking in data from the indexed user-item actions.

• name: TrainingActionModelScheduler

• implementation: a scheduler that mimics a model management request

• schedule: every mid-night

• request context: all available data in the indexer UserItemActionIndexer

121

7.4.3 System-Level Cold-Start

One goal of Samantha is to support researchers who are interested in answering ques-

tions about how a predictive system or recommendation system affect user experience

or user tasks. In this case study, we demonstrate how to set up a recommender server,

with the minimum amount of implementation but without losing the flexibility of in-

corporating important factors in the domain, to study a new system that recommends

emails to a user of an email client based on the user’s calendar schedule [140]. We

assume application developers have access to emails in a user’s “inbox” or “sent” folder

and the user’s calendar schedule in the upcoming week after getting permission from

the user (i.e., acting as a agent for the user). Imagine that the application is a plugin

for the email client that can proactively recommend potentially useful emails to the user

based on the user’s next upcoming meeting.

One can imagine a condition where the application provides an interface that enables

real-time feedback from users so that users can tell the system whether the displayed

emails are useful to the user’s upcoming meeting or not (if the users want to) and the

system interactively evolves by learning from this feedback. Alternatively, the system

can directly learns from implicit user interactions, e.g., treating hovering on or clicking

the recommended email as positive signals. A particular reason that we want the system

to learn in real-time is that the system does not have any usefulness feedback (neither

explicit usefulness judgments or implicit interaction). The specification below following

the recommender server framework we designed illustrates that it only takes minimum

customization in the feature extraction process to have a production-ready recommender

system for the project. All we need is a predictor specification similarly based on the

LinearUCB model (other predictor types can be used as long as the predictor support

online model learning or updating). Note that it assumes the input data sent by the

email client (proxied by a secured application server) has four data fields for each data

point: people involved in the email and meeting, content of the email and the meeting,

i.e., the application is asking (in the phase of requesting predictions) and telling (in the

phase of training the model) the recommender how much useful a list of emails might be

to a meeting. The researcher might hypothesize the content similarity between the email

and meeting and the overlap of the sets of people involved are potentially important

factors.

122

predictors: One predictor that online estimates a LinearUCB model to dynamically

combine multiple factors that might be important for predicting the usefulness of emails

to a meeting.

• name: LinearUCBEmailMeetingUsefulnessPredictor

• implementation: LinearUCB model based predictor type

• feature extractors:

– email-meeting content similarity extractor: compute the similarity between

the content of the email and meeting, set the extracted feature to be the

parameter index of this factor and the computed similarity value

– email-meeting people overlap extractor: compute the overlap between the

sets of people involved in the email and meeting, set the extracted feature to

be the parameter index of this factor and the computed overlap value

If the research develops customized complex modeling technique for predicting the

usefulness of an email to a meeting, e.g., implementing natively in the server or designing

computational graphs in TensorFlow, the process of having this new technique take

effects in front of users (or recruited participants) to get user feedback or user-centric

evaluation can still be accelerated by using some of the components of the recommender

server.

7.5 Discussion

In this work, we propose that recommender system research and practice can benefit

from going from offline to online environments because it better connects the user-centric

research and offline algorithmic and modeling research in recommender systems. In the

long run, it can help answer the important questions of how recommendation technolo-

gies affect user perception, experience, satisfaction and people’s life. We demonstrate

that we can support this type of work by designing generic server frameworks. We

provide an example framework along with case studies to show that this framework can

support real world applications and potentially fulfill the goal of accelerating going from

offline to online.

123

We recognize that not all research can benefit from following this approach. For ex-

ample, computational questions for specific recommendation algorithms might be well

answered with offline data experiments. Similarly, questions regarding user factors that

are independent of algorithmic manipulation can be well answered by designed exper-

imental tasks for users to accomplish without involving field usage of a system. For

either type of work, following this server framework might incur significant overhead

because it introduces constraints or additional work (e.g., working with and maintain-

ing a server environment). Overall, this work makes contribution by supporting an

important thread of research in recommender systems where complex modeling and

algorithms are combined with user-centric design and evaluation.

